中文核心期刊
CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊

重庆交通大学学报(自然科学版) ›› 2012, Vol. 31 ›› Issue (2): 199-202.DOI: 10.3969 /j.issn.1674-0696.2012.02.07

• • 上一篇    下一篇

考虑初始缺陷和多种荷载作用的高墩稳定性分析

宋嘉1,张敏1,李银斌2   

  1. 1. 重庆交通大学土木建筑学院,重庆400074; 2. 贵州省交通规划勘察设计研究院股份有限公司,贵州贵阳550001
  • 收稿日期:2011-07-06 修回日期:2011-11-08 出版日期:2012-04-15 发布日期:2014-10-31
  • 作者简介:宋嘉( 1984 - ) ,男,山东泰安人,硕士研究生,主要从事大跨径桥梁设计理论方面的研究。E-mail: lvyelanmeng@126. com。
  • 基金资助:
    贵州省交通运输厅科技项目( 2010122017)

Stability Analysis on High Piers with Consideration of Initial Imperfection and Multiple Loads

Song Jia1,Zhang Min1,Li Yinbin2   

  1. 1. School of Civil Engineering & Architecture,Chongqing Jiaotong University,Chongqing 400074,China; 2. Guizhou Transportation Planning Survey & Design Academe Co. ,Ltd. ,Guiyang 550001,Guizhou,China
  • Received:2011-07-06 Revised:2011-11-08 Online:2012-04-15 Published:2014-10-31

摘要: 以连续刚构桥最大悬臂状态作为研究对象,同时考虑了高墩几何初始缺陷和多种荷载作用对其几何非线性稳 定的影响。通过建立弹性稳定平衡微分方程和二阶分析两种方法,推导出墩顶偏位和墩底弯矩计算公式,以及把多 种荷载作为初始缺陷计入墩顶偏位的近似计算公式,简化了高墩在复杂工况下的墩顶偏位、墩底弯矩和最大承载力 的求解过程。计算结果与有限元分析吻合良好。

关键词: 连续刚构桥, 高墩, 施工阶段, 几何初始缺陷, 二阶效应, 几何非线性稳定

Abstract: When continuous rigid frame bridges on the maximum cantilever phase are taken as the object,the effect of geometrical initial imperfection and multiple loads on high piers’geometric nonlinear stability are considered at the same time. Calculated formulas for the displacement of pier top and the bending moment of pier bottom are derived,through two methods of establishing elastic stability differential equation and second-order analysis. The approximately calculated formula is obtained,which takes multiple loads as initial imperfection to calculate the displacement of pier top. It is that the solving processes of the displacement of pier top and the bending moment of pier bottom and the most load-carrying capacity under complex operating condition are simplified. The calculation results are in good agreement with the finite element results.

Key words: continuous rigid frame bridges, high piers, construction stage, geometric initial imperfection, second-order effect, geometric nonlinear stability

中图分类号: